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Chapter 1

Probabilities

1.1 Event Sets

DEFINITION. A collection (or call it a set) F of subsets of €2 is called a
o-algebra if it satisfies:

1. contains the empty set: () € F;
2. is closed under countable unions: A, As, ..., e F — U;A; € F;
3. is closed under complements: A € F = AY ¢ F;

It is trivial to know:

A, Ay ... EF = UiAZCGJ:
- (UzAlC)C e F
= ﬂ,LAz S .F

TRIVAL 0-ALGEBRA. Fy = {),Q} is a o-algebra.

COLLECTION OF ALL SUBSETS. F = 2% is a o-algebra.

DEFINITION. Let G be a collection of subsets of ). The o-algebra generated
by G: o(G) is the smallest o-algebra that contains G.

DEFINITION. A pair is called a measure space (£2, F) if € is the sample space
and F is a o-algebra of subsets.

1.2 Probability

DEFINITION. A function P defined on (2, F): P : F — [0,1] is called a
probability measure if:
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1. P(Q)=1
2. Only for countable unions: if A, NA; =0 fori#j = P(UA4) =

2. P(A)

The countable sample space is easy to handle with, take F = 2 and some
P to assign each event to [0, 1]. But the uncountable space could be more
delicate to solve.

1.3 Infinite Spaces

1.3.1 Uniform Lebesgue Measure on (0, 1)

Define a Lebesque measure i, then we can determine the probability that w
falls within an open interval:

P{w:w € (a,0)}) = pn((a,b)) =b—a,0<a<b< 1

In this case we notice that 2 = 2(%Y is not a o-algebra of (0, 1). Then we

introduce the Borel o-algebra on (0, 1) to make an appropriate sample space
for our experiment:

B((0,1)) := o(O) where O ={AC (0,1): A=(a,b),0<a<b< 1}

This note will not discuss much on the Borel set, it is about creating some
subsets of open sets in ().

1.3.2 Infinite Sequence of Coin Tosses

Let w = wiws...w;...w, where w; € {H,T}. If T have known wy,ws, I can tell
you if w belongs to each of the sets in F3: all possible cases for two tossing.
When n becomes very large, then we have:

F = 0(Foo)y Foo = UnTn

But things (or call them sets) like ”sequences for which x percent of coin
tosses are heads” are not in F, they are actually in F.

DEFINITION. Let (€2, F,P) be a probability space, then if a set A € F s.t.
P(A) = 1, then the event A occurs P almost surely (i.e. P-a.s.).



Chapter 2

Information and Conditioning

2.1 Information and o-Algebras

DEFINITION 2.1.1. Let 2 be a nonempty set. Let T be a fixed positive
number, and assume that for each ¢ € [0, 7] there is a



Chapter 3

Brownian Motion

3.1 Scaled Random Walks

3.2 Brownian Motion

DEFINITION. Let (2, F,P) be a probability space, a Brownian motion is a
stochastic process W = (W;);>o that:

1. WOZO

2. independent increment: if 0 <r < s <t < u < oo then (W, — W;) L
(WS - Wr)

3. stationary increment: if 0 < r < s then Wy — W, ~ N (0,5 — r)
4. the map t — W, is continuous for every w

The distribution of a normally distributed random vector is uniquely deter-
mined by its mean vector and covariance matrix.

E.g. Let W = (W,,,W,,,...,W,;,) is a d-dimensional normally distributed
variable, what is the covariance matrix? We have E[W;, ,W,,,..., W] = 0.
Then for T > t:

CoV[Wr, W] = EWrW, — EWrEW,
= EWr W,
=EWr — W, + W)W,
= E[(Wr — W,)W,] + EW
= E[Wr — W EW, + EW}?
=VW, =t
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tl tl Ce tl

_ o toty ...t

The covariance matrix is: C'=| . . .
t1 to ... g

DEFINITION. A filtration for the Brownian motion W is a collection of o-
algebra F = (F)t > 0:

1. Gathering more and more information: if 0 < s < t then F, < F;

2. Adaptivity: for all ¢t > 0, we have W; € F;

3. Independence of future increments: if u > ¢ > 0 then (W, — W;) L F;
By contrast, a Brownian motion W is a martingale under such filtration F:

E[W,|Fs] = E[W, — W,|F,| + E[W,|F] =0+ Wy = W

3.3 Quadratic Variation

Let IT be a partition on [0,7] and ||II|| = max;(t;+1 — ;).
DEFINITION. The first variation of f up to time T is:

FVr(f) = limyyoo Y0 [ (tj+1) — f(1))]

LEMMA. By the Mean Value Theorem there 3t} € [t;,¢;.1] s.t.

f(tjﬂ) - f(tj> = f’(tﬁ(tﬂl - tj)
— FVr(f) = Ji 1F/(®)|dt

DEFINITION. Let f : [0,7] — R, the quadratic variation of f up to time T
is:

[f, o= limyg oo 2200 [F (i) — F(25)]
LEMMA. [W, f]r = 0 for any smooth function f(t).

Proof. For any partition II of [0, 7] we have:

< I L)~ 1)
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Insert the inequality into the definition of [f, f]7 to obtain:

n—1
1 <l IO o 5175 =)

~o. | PP =0

THEOREM. Let W be a Brownian motion. Then for all 7" > 0 we have
(W, W]p =T almost surely.

]

Proof. For a fixed partition I = {0 = tg,t1,...,t, = T} the sampled
quadratic variation of W, denoted as Qr:

Qn = Z;L;[)l(Wtj+l - Wtj)2
Since Qu — [W, W]t as ||II|| — 0, it is sufficient to show if EIl — T and
VII — 0 then the theorem holds. By Wi,,, — Wy, ~ N (0,141 —t;):
E[Wtj+1 - Wtj]2 - tj+1 — t]
V[Wtj+1 - Wtj]Q = Q(t]'-i-l - tj)z
Take back to deliver that:

n—1

Bl =Y (W,,, - W,)* Ztm

7=0

n—1
VIT = (2t — t;)° <||n||22 tiy —t;) = 20T — 0

But it is incorrect to say that dW? = dt. In fact, dW2 2 dt.
DEFINITION. Let f,g:[0,7] — R. The covariation of f and g is:

[f, gl = iy o 305 [F (1) — F(t)][9(E41) — 9(t)]



	Probabilities
	Event Sets
	Probability
	Infinite Spaces
	Uniform Lebesgue Measure on (0, 1)
	Infinite Sequence of Coin Tosses


	Information and Conditioning
	Information and -Algebras

	Brownian Motion
	Scaled Random Walks
	Brownian Motion
	Quadratic Variation


