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Chapter 1

Probabilities

1.1 Event Sets

Definition. A collection (or call it a set) F of subsets of Ω is called a
σ-algebra if it satisfies:

1. contains the empty set: ∅ ∈ F ;

2. is closed under countable unions: A1, A2, ...,∈ F =⇒ ∪iAi ∈ F ;

3. is closed under complements: A ∈ F =⇒ AC ∈ F ;

It is trivial to know:

A1, A2, ... ∈ F =⇒ ∪iA
C
i ∈ F

=⇒ (∪iA
C
i )

C ∈ F
=⇒ ∩iAi ∈ F

Trival σ-algebra. F0 = {∅,Ω} is a σ-algebra.
Collection of all subsets. F = 2Ω is a σ-algebra.
Definition. Let G be a collection of subsets of Ω. The σ-algebra generated
by G: σ(G) is the smallest σ-algebra that contains G.
Definition. A pair is called a measure space (Ω,F) if Ω is the sample space
and F is a σ-algebra of subsets.

1.2 Probability

Definition. A function P defined on (Ω,F): P : F → [0, 1] is called a
probability measure if:
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1.3. INFINITE SPACES CHAPTER 1. PROBABILITIES

1. P(Ω) = 1

2. Only for countable unions: if Ai ∩ Aj = ∅ for i ̸= j =⇒ P(∪iAi) =∑
i P(Ai)

The countable sample space is easy to handle with, take F = 2Ω and some
P to assign each event to [0, 1]. But the uncountable space could be more
delicate to solve.

1.3 Infinite Spaces

1.3.1 Uniform Lebesgue Measure on (0, 1)

Define a Lebesgue measure µ, then we can determine the probability that ω
falls within an open interval:

P({ω : ω ∈ (a, b)}) = µ((a, b)) := b− a, 0 < a ≤ b < 1

In this case we notice that 2Ω = 2(0,1) is not a σ-algebra of (0, 1). Then we
introduce the Borel σ-algebra on (0, 1) to make an appropriate sample space
for our experiment:

B((0, 1)) := σ(O) where O = {A ⊆ (0, 1) : A = (a, b), 0 < a ≤ b < 1}

This note will not discuss much on the Borel set, it is about creating some
subsets of open sets in Ω.

1.3.2 Infinite Sequence of Coin Tosses

Let ω = ω1ω2...ωi...ωn where ωi ∈ {H,T}. If I have known ω1, ω2, I can tell
you if ω belongs to each of the sets in F2: all possible cases for two tossing.
When n becomes very large, then we have:

F = σ(F∞), F∞ = ∪∞Fn

But things (or call them sets) like ”sequences for which x percent of coin
tosses are heads” are not in F∞, they are actually in F .
Definition. Let (Ω,F ,P) be a probability space, then if a set A ∈ F s.t.
P(A) = 1, then the event A occurs P almost surely (i.e. P-a.s.).
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Chapter 2

Information and Conditioning

2.1 Information and σ-Algebras

Definition 2.1.1. Let Ω be a nonempty set. Let T be a fixed positive
number, and assume that for each t ∈ [0, T ] there is a
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Chapter 3

Brownian Motion

3.1 Scaled Random Walks

3.2 Brownian Motion

Definition. Let (Ω,F ,P) be a probability space, a Brownian motion is a
stochastic process W = (Wt)t≥0 that:

1. W0 = 0

2. independent increment: if 0 ≤ r < s < t < u < ∞ then (Wu −Wt) ⊥
(Ws −Wr)

3. stationary increment: if 0 ≤ r < s then Ws −Wr ∼ N (0, s− r)

4. the map t → Wt is continuous for every ω

The distribution of a normally distributed random vector is uniquely deter-
mined by its mean vector and covariance matrix.
E.g. Let W := (Wt1 ,Wt2 , . . . ,Wtd) is a d-dimensional normally distributed
variable, what is the covariance matrix? We have E[Wt1 ,Wt2 , . . . ,Wtd ] = 0.
Then for T ≥ t:

CoV[WT ,Wt] = EWTWt − EWTEWt

= EWTWt

= E(WT −Wt +Wt)Wt

= E[(WT −Wt)Wt] + EW 2
t

= E[WT −Wt]EWt + EW 2
t

= VWt = t
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3.3. QUADRATIC VARIATION CHAPTER 3. BROWNIAN MOTION

The covariance matrix is: C =


t1 t1 . . . t1
t1 t2 . . . t2
...

...
. . .

...
t1 t2 . . . td


Definition. A filtration for the Brownian motion W is a collection of σ-
algebra F = (Ft)t ≥ 0:

1. Gathering more and more information: if 0 ≤ s < t then Fs < Ft

2. Adaptivity: for all t ≥ 0, we have Wt ∈ Ft

3. Independence of future increments: if u > t ≥ 0 then (Wu −Wt) ⊥ Ft

By contrast, a Brownian motion W is a martingale under such filtration F:

E[Wt|Fs] = E[Wt −Ws|Fs] + E[Ws|Fs] = 0 +Ws = Ws

3.3 Quadratic Variation

Let Π be a partition on [0, T ] and ||Π|| = maxi(ti+1 − ti).
Definition. The first variation of f up to time T is:

FVT (f) := lim||Π||→0

∑n−1
j=0 |f(tj+1)− f(tj)|

Lemma. By the Mean Value Theorem there ∃t∗j ∈ [tj, tj+1] s.t.

f(tj+1)− f(tj) = f ′(t∗j)(tj+1 − tj)

=⇒ FVT (f) =
∫ T

0
|f ′(t)|dt

Definition. Let f : [0, T ] → R, the quadratic variation of f up to time T
is:

[f, f ]T := lim||Π||→0

∑n−1
j=0 [f(tj+1)− f(tj)]

2

Lemma. [W, f ]T = 0 for any smooth function f(t).

Proof. For any partition Π of [0, T ] we have:

n−1∑
j=0

[f(tj+1)− f(tj)]
2 =

n−1∑
j=0

[f ′(t∗j)]
2(tj+1 − tj)

2

≤ ||Π||
n−1∑
j=0

[f ′(t∗j)]
2(tj+1 − tj)
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3.3. QUADRATIC VARIATION CHAPTER 3. BROWNIAN MOTION

Insert the inequality into the definition of [f, f ]T to obtain:

[f, f ]T ≤ lim
||Π||→0

||Π|| · lim
||Π||→0

n−1∑
j=0

[f ′(t∗j)]
2(tj+1 − tj)

= 0 ·
∫ T

0

|f ′(t)|2dt = 0

Theorem. Let W be a Brownian motion. Then for all T ≥ 0 we have
[W,W ]T = T almost surely.

Proof. For a fixed partition Π = {0 = t0, t1, . . . , tn = T} the sampled
quadratic variation of W , denoted as QΠ:

QΠ :=
∑n−1

j=0 (Wtj+1
−Wtj)

2

Since QΠ → [W,W ]T as ||Π|| → 0, it is sufficient to show if EΠ → T and
VΠ → 0 then the theorem holds. By Wtj+1

−Wtj ∼ N (0, tj+1 − tj):

E[Wtj+1
−Wtj ]

2 = tj+1 − tj

V[Wtj+1
−Wtj ]

2 = 2(tj+1 − tj)
2

Take back to deliver that:

EΠ =
n−1∑
j=0

(Wtj+1
−Wtj)

2 =
n−1∑
j=0

tj+1 − tj = T

VΠ =
n−1∑
j=0

(2(tj+1 − tj)
2) ≤ ||Π||

n−1∑
j=0

2(tj+1 − tj) = 2ΠT → 0

But it is incorrect to say that dW 2
t = dt. In fact, dW 2

t
d−→ dt.

Definition. Let f, g : [0, T ] → R. The covariation of f and g is:

[f, g]T = lim||Π||→0

∑n−1
j=0 [f(tj+1)− f(tj)][g(tj+1)− g(tj)]
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